Research Article
David Oriabure Ekhuemelo*
David Oriabure Ekhuemelo*
Corresponding
Author
Department
of Forest Production and Products, Federal University of Agriculture Makurdi
(Now Joseph Sarwuan Tarka University, Makurdi) Nigeria.
E-mail: ekhuemelo.david@uam.edu.ng,
Tel: +234-703 133 2803
Terzungwe Atondo
Terzungwe Atondo
Department of Forest Production and
Products, Federal University of Agriculture Makurdi (Now Joseph Sarwuan Tarka
University, Makurdi) Nigeria.
Emmanuel Terzungwe Tembe
Emmanuel Terzungwe Tembe
Department of Forest Production and
Products, Federal University of Agriculture Makurdi (Now Joseph Sarwuan Tarka
University, Makurdi) Nigeria.
Abstract
Isolation, characterization, and antibacterial evaluation of stem bark of A. boonei against selected wood-associated bacteria was studies. Stem bark of A. boonei was collected, dried under shade and pulverised into powder for extraction. Extraction was carried out by macerating 1000 g in 1000 mL (w/v) of n-hexane for 24 hours and filtering off the hexane extract with No. 1 Whatman and subjected to column chromatography to isolate pure fractions. Fractions were sent for Nuclear Magnetic Resonance (NMR) analysis. Fractions and extracts tested on Mueller Hinton agar inoculated with microbes at 37°C for 24 hours. The zone of inhibition was measured to determine the antibacterial properties with sparfloxacin and sparfloxacin serving as control. Minimum inhibition concentration and minimum bactericidal concentration were determined. Results revealed ABO39 and ABO41 fractions to yield alpha amyrin acetate, while ABO43 contained both lupeol acetate and beta amyrin acetate. Similarly, ABO45 showed lupeol acetate along with alpha amyrin acetate, contributing to a rich profile of triterpenoids. A. boonei fractions were very active against Pseudomonas aeruginosa, Streptococcus salvarius, Serratia marcescens, Rhanella sp, and Klebsiella sp, with zones of inhibition ranging from 24 mm to 30 mm. P. aeruginosa and S. salvarius showed variable susceptibility, with MIC values ranging from 100 to 200 µg/mL and MBC values corresponding closely to their MICs. Klebsiella sp. demonstrated a MIC of 100 µg/mL for both ABO-42 and ABO-44, indicating a more pronounced sensitivity. The antibacterial active of the methanol extract followed the same trend as the fraction.
Abstract Keywords
Antibacterial, Alstonia
boonei, compound, extract, fraction, stem bark.
References
1.
Adotey, J. P. K;
Adukpo, G. E; Opoku Boahen, Y.; Armah, F. A. A Review of the Ethnobotany and
Pharmacological Importance of Alstonia
boonei De Wild (Apocynaceae). Pharmaco., 2012, 6, 1–9. https://doi.org/10.5402/2012/587160.
2.
Bekoe, E.; Kitcher,
C.; Gordon, A., Frimpong–Manso, S.; Dodoo, K.; Schwinger, G. Pharmacognostic
Characteristics and Mutagenic Studies of Alstonia
boonei De Wild. Res. J. of Pharmacogno. 2020, 7, 7–15. https://doi.org/10.22127/rjp.2019.204629.1526.
3.
Elijah, A.;
Ojimelukwe, P.; Ekong, U.; Asamudo N. Effect of Sacoglottis gabonensis and
Alstonia boonei on the kinetics of Saccharomyces cerevisiae isolated from palm
wine. Afri. J. of Biotech. 2010, 9, 5730–5734.
https://doi.org/10.5897/ajb10.387
4.
Betti, J.; Ambara, J. Sustainable
Harvesting of Alstonia boonei De
Wild. (Apocynaceae) in the Community Forest of Mbeth II, East Region of
Cameroon. Agriculture, Forestry and Fisheries, 2014, 3. https://doi.org/10.11648/j.aff.s.2014030601.13
5.
Bf, A.; So, O.-L., Ea, O.; Ao, O.; Ao, A.;
To, O. Some underutilized indigenous timber trees with high medicinal values:
Its challenges and prospects. World Journal of Advanced Research and Reviews,
2021, 10, 161–168. https://doi.org/10.30574/wjarr.2021.10.2.0223.
6.
Adomi, P.; Umukoro, G.
Antibacterial activity of aqueous and ethanol crude extracts of the root barks
of Alstonia boonei and preliminary
phytochemical test of Morinda lucida. J. of Med. Plants Res., 2020, 4, 644–648.
https://doi.org/10.5897/jmpr09.095
7.
Okoye, N. N.;
Ajaghaku, D. L.; Okeke, H. N.; Ilodigwe, E. E.; Nworu, C. S.; Okoye, F. B. C. beta-Amyrin
and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display
profound anti-inflammatory activity. Pharmaceutical Biology, 2014,
52(11), 1478–1486. https://doi.org/10.3109/13880209.2014.898078
8.
Adomi, P.
Antibacterial activity of aqueous and ethanol extracts of the stem bark of Alstonia boonei and Morinda lucida. Scientif. Re. and Ess., 2006, 1(2), 050–053. https://doi.org/10.5897/sre.9000188
9.
Demeni, P. C. E.;
Nyegue, M. A.; Ndedi Moni, E. D. F.; Agbor, G. A.; Betote, P. H. D.; Tchamgoue,
E. N.; Kom, C. W.; Foumane Maniepi, J. S. Endophytic Fungi from Alstonia boonei
De Wild and Greenwayodendron suaveolens
(Engl. and Diels) Verdc. subsp. Suaveolens Possess Inhibitory Activity against
Pneumonia Causing Bacteria. Evidence-Based Complem. and Altern. Med., 2021, 2,
1–10. https://doi.org/10.1155/2021/9966323
10.
Omoregbe, R.; Osaghae, F. (1997).
Antimicrobial activity of extracts of Momordica charantia and Alstonia boonei
on some bacteria. Nig. J. of Biotech., 1997, 8, https://doi.org/10.4314/njb.v8i1.
11.
Olanlokun, J. O.; Olotu, F. A.; Idowu,
O. T.; Agoni, C.; David, M. O.; Soliman, M.; Olorunsogo, O. O. In vitro, in
silico studies of newly isolated tetrahydro-4-(7-hydroxy-10-methoxy-6,
14-dimethyl-15-m-tolylpentadec-13-enyl) pyran-2-one and isobutyryl acetate
compounds from Alstonia boonei stem bark. J. of Molecu. Struct., 2020, 1216,
128225. https://doi.org/10.1016/j.molstruc.2020.128225
12.
Adomi, P. Screening of
the leaves of three Nigerian medicinal plants for antibacterial activity. Afri.
J. of Biotechnol. 2008, 7.
https://doi.org/10.4314/ajb.v7i15.59084
13.
Siddi, S. A. Evaluation of neem seed
and leaf water extracts and powders foe the control of insect pests in the
sudan, Technical Bulletin. Agricultural Research Crop. Shambat Research
Station, technical Bulletin No. 6. 1991, 39 pp.
14.
Ahmed, E. E. The effect of some Bruchid
seed borers on the Acacia Nilotica, Prosopis
chilensis and their control M. Sc. Thesis, Faculty of agric. Khartoum
university. 1995, 68-144.
15.
Panda, S. K.; Mohanta, Y. K.; Padhi,
L.; Luyten, W. Antimicrobial activity of select edible plants from Odisha,
India against food-borne pathogens. 2019, LWT, 113, 108246.
https://doi.org/10.1016/j.lwt.2019.06.013
16.
Vipra, A.; Roy, P.; Junjappa, R. P.;
Desai, S. N.; Sriram, B., Ravinder, P., Poonacha, N., Padmanabhan, S.
Determining the Minimum Inhibitory Concentration of Bacteriophages: Potential
Advantages. Advan. Microbio., 2013, 03, 02, 181–190. https://doi.org/10.4236/aim.2013.32028
17.
Parvekar, P.; Palaskar, J.; Metgud, S.;
Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus
aureus. Bioma. Invest. Dent., 2020, 7, 1, 105–109. https://doi.org/10.1080/26415275.2020.1796674
18.
Vitor, C., Mazzuco, T., Figueiredo, C.,
Calixto, J., Hara, D., and Bento, A. Therapeutic action and underlying
mechanisms of a combination of two pentacyclic triterpenes, α‐ and β‐amyrin, in
a mouse model of colitis. British Journal of Pharmacology, 2009, 157, 6,
1034–1044. https://doi.org/10.1111/j.1476-5381.2009.00271.x
19.
Ciuffreda, P.; Manzocchi, A.; Casati,
S. (2007). Complete 1H and 13C NMR spectral assignment of α‐ and β‐adenosine,
2′‐deoxyadenosine and their acetate derivatives. Magnetic Resonance in
Chemistry, 2007, 45, 9, 781–784. https://doi.org/10.1002/mrc.2036
20.
Soldi, C.; Pizzolatti, M. G.; Luiz, A.
P.; Marcon, R.; Meotti, F. C.; Mioto, L. A.; Santos, A. R. S. Synthetic
derivatives of the α- and β-amyrin triterpenes and their antinociceptive
properties. Bioorgan. & Med. Chem., 2007, 16, 6, 3377–3386. https://doi.org/10.1016/j.bmc.2007.12.008
21.
Machado, V. R.; Sandjo, L. P.;
Pinheiro, G. L.; Moraes, M. H.; Steindel, M.; Pizzolatti, M. G.; Biavatti, M.
W. Synthesis of lupeol derivatives and their antileishmanial and
antitrypanosomal activities. Nat. Prod. Res., 2017, 32, 3, 275–281. https://doi.org/10.1080/14786419.2017.1353982
22.
Malinowska, M.; Sikora, E.; Eris, I.;
Wojtkiewicz, A. M.; Miroslaw, B.; Pasikowska-Piwko, M.; Ogonowski, J.;
Szaleniec, M. (2019). New lupeol esters as active substances in the treatment
of skin damage. Plos One, 2019, 14, 3, e0214216. https://doi.org/10.1371/journal.pone.0214216
23.
Reynolds, W. F.; Mclean, S.; Enriquez,
R. G.; Leon, I.; Escobar, L. I.; Poplawski, J. (1986). Total assignment of 13C
and 1H spectra of three isomeric triterpenol derivatives by 2D NMR: an
investigation of the potential utility of 1H chemical shifts in structural
investigations of complex natural products. Tetrahed., 1986, 42, 13, 3419–3428.
https://doi.org/10.1016/s0040-4020(01)87309-9
24.
Torres-Naranjo, M.; Morocho, V.;
Suárez, A.; Gilardoni, G.; Flores, P.; Cartuche, L. Chemical Constituents of
Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and it’s in Vitro
α-Amilase and α-Glucosidase Inhibitory Activities. Molecules, 2016, 21(11),
1461. https://doi.org/10.3390/molecules21111461
25.
Lima-Júnior, R. C. P.; Brito, G. A. C.;
Sousa, D. I. M.; Rao, V. S. N.; Santos, F. A.; Cunha, G. M.; Chaves, M. H.
Modulation of acute visceral nociception and bladder inflammation by plant
triterpene, α, β-amyrin in a mouse model of cystitis: role of tachykinin NK1-receptors,
and K+ ATP channels. Inflam. Res., 2007, 56(12), 487–494. https://doi.org/10.1007/s00011-007-7023-4
26.
Viet, T. D.; Xuan, T.
D.; Anh, H. α-Amyrin and β-Amyrin Isolated from Celastrus hindsii Leaves
and their Antioxidant, Anti-Xanthine Oxidase, and Anti-Tyrosinase
Potentials. Molecules (Basel, Switzerland), 2021, 26,
7248.
27.
Okoye, N.; Okoye
C.O.B. (2016). Anti-oxidant and Antimicrobial Flavonoid Glycosides from Alstonia boonei De Wild Leaves. Brit. J.
of Pharmaceu. Res. 2016, 10. 10.9734/BJPR/2016/24809.
28.
Hernández-Vázquez L.; Palazon J.;
Navarro-Ocaña A. The Pentacyclic Triterpenes α, β-amyrins: a review of sources
and biological activities. In: Venke-teshwer R. A Global Persp. of the Role in
Nutri. and Health. Ed. Phytoch., 2012, 487-501.
29.
Akihisa, T.; Kojima,
N.; Kikuchi, T.; Yasukawa K.; Tokuda, H. T.; Masters, E.; Manosroi A.;
Manosroi, J. Anti-Inflammatory
and Chemopreventive Effects of Triterpene Cinnamates and Acetates from Shea
Fat. J. of Oleo Sci. 2010, 59, 273–280.
30.
Guimarães, A. C.;
Magalhães, A.; Nakamura, M. J.; Siani, A. C.; Barja-Fidalgo, C.; Sampaio, A. L.
F. Flavonoids Bearing an
O-Arabinofuranosyl-(1-3)-Rhamnoside Moiety from Cladocolea Micrantha:
Inhibitory Effect on Human Melanoma Cells. Nat. Prod. Comm., 2021, 7,
1934578X1200701.
31.
Nagarajan, S.; Mohan
Rao, L. J. Triterpenoids from
Swallow Roots--A Convenient HPLC Method for Separation. J. of Chromatog.
Sci., 2007, 45, 189–194.
32.
Opoku F.; Akoto O. Antimicrobial and
Phytochemical Properties of Alstonia Boonei Extracts. Org. Chem. Current Res.
2015, 1:137.
33.
Mollica, A.; Zengin,
G.; Sinan, K.I.; Marletta, M.; Pieretti, S.; Stefanucci, A.; Etienne, O.K.;
Jekő, J.; Cziáky, Z.; Bahadori, M.B., Picot-Allain C.; Mahomoodally M.F. A Study on Chemical Characterization and
Biological Abilities of Alstonia boonei Extracts Obtained by
Different Techniques. Antioxid. 2022, 11, 2171.
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
Isolation, characterization, and antibacterial evaluation of stem bark of A. boonei against selected wood-associated bacteria was studies. Stem bark of A. boonei was collected, dried under shade and pulverised into powder for extraction. Extraction was carried out by macerating 1000 g in 1000 mL (w/v) of n-hexane for 24 hours and filtering off the hexane extract with No. 1 Whatman and subjected to column chromatography to isolate pure fractions. Fractions were sent for Nuclear Magnetic Resonance (NMR) analysis. Fractions and extracts tested on Mueller Hinton agar inoculated with microbes at 37°C for 24 hours. The zone of inhibition was measured to determine the antibacterial properties with sparfloxacin and sparfloxacin serving as control. Minimum inhibition concentration and minimum bactericidal concentration were determined. Results revealed ABO39 and ABO41 fractions to yield alpha amyrin acetate, while ABO43 contained both lupeol acetate and beta amyrin acetate. Similarly, ABO45 showed lupeol acetate along with alpha amyrin acetate, contributing to a rich profile of triterpenoids. A. boonei fractions were very active against Pseudomonas aeruginosa, Streptococcus salvarius, Serratia marcescens, Rhanella sp, and Klebsiella sp, with zones of inhibition ranging from 24 mm to 30 mm. P. aeruginosa and S. salvarius showed variable susceptibility, with MIC values ranging from 100 to 200 µg/mL and MBC values corresponding closely to their MICs. Klebsiella sp. demonstrated a MIC of 100 µg/mL for both ABO-42 and ABO-44, indicating a more pronounced sensitivity. The antibacterial active of the methanol extract followed the same trend as the fraction.
Abstract Keywords
Antibacterial, Alstonia
boonei, compound, extract, fraction, stem bark.
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Editor-in-Chief
Professor Dr. Marcello Iriti
This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).